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Landau’s instability mechanism in superflow is considered with special attention given to the role of
nonuniformity in the flow. Linear stability analysis applied to the first in a series of approximate micro-
scopic equations for the superfluid reveals a growth rate for Landau’s instability proportional to the
shear in the flow. In a quasiparticle description, the shear acts as a source of particle pair creation. The
observation of roton-pair creation in experiments with electron bubbles in helium is offered as evidence

of this phenomenon.

PACS number(s): 47.37.+q, 67.40.Hf, 67.57.De

I. INTRODUCTION

Landau’s classical argument [1], which relates the on-
set velocity for dissipation in a superfluid to the disper-
sion of elementary excitations, relies on a Galilean trans-
formation. An example of a system to which such a
transformation can be applied is a superfluid in an infinite
cylindrical container. In its ground state, the superfluid
is at rest with respect to the cylinder; excitations, charac-
terized by a momentum k along the axis of the cylinder,
have positive energy €,. In any other frame of uniform
motion along the cylinder axis, the energy of excitations
is given by €, +v-k, where v is the apparent flow velocity
seen by the observer. Above a certain critical flow veloci-
ty v, (or state of motion of the observer), the energies of
some excitations become negative; apparently the stabili-
ty of the system is jeopardized since its energy can be
lowered by spontaneously creating excitations.

The same Galilean transformations can, however, also
transform a state of flow into a state of rest. Since, by
definition, the ground state is stable, this implies that in
fact all states of uniform flow are stable as well. After all,
the state of motion of the observer should have no
influence on the stability of what is being observed. Al-
ternatively, we can be quite sure that in order for a flow
to be unstable it must not be possible to transform it to
the ground state. That this is generally true in practice is
clear when we consider the walls of the cylinder. Unless
the walls are perfectly smooth, any flow will have some
nonuniform component that no Galilean transformation
can eliminate. Although Landau’s argument correctly
identifies the excitations or modes responsible for the in-
stability, the growth of such modes requires nonuniformi-
ty or shear in the superfluid.

This paper reexamines Landau’s instability problem
with a tool that is able to deal with general states of flow.
The three main results are as follows: (1) a Schrodinger-
like equation for modes in nonuniform flow, (2) a formula
for the growth of such modes, and (3) the interpretation
of this instability as a quasiparticle pair-creation process.
The tool, called continuous collapse dynamics [2], is an
approximation that transforms the time-dependent
Schrodinger equation for many degrees of freedom into a
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nonlinear evolution equation involving relatively few de-
grees of freedom. Standard linear stability analysis ap-
plied to the nonlinear equation leads to the above stated
results. A quasiparticle interpretation of these results is
offered as an explanation of the puzzling fact that roton-
pair emission seems to be the dominant dissipation mech-
anism for electron bubbles accelerated above v; in
superfluid helium [3]. We conclude with a discussion of
Unruh’s proposal [4] that a fluid might offer a laboratory
realization of black hole evaporation.

II. CONTINUOUS COLLAPSE DYNAMICS

Our system consists of N identical bosons interacting
with each other and a static external potential (represent-
ing the walls). In the position representation the Hamil-
tonian is

1 N
2M

i=1

A=— (V)4 V(ry, ..., 1x), (1)

where V is symmetrical in all its arguments, M is the bo-
son mass, and #=1. The ground state wave function ¥,
is assumed known and is used to construct a class of wave
functions having the same degrees of freedom as a single
particle:

v, =exp | [d’rp(nalr,t) |V, . )
Here
N
p)=3 8(r—r;) 3)

i=1

is the density operator, and the function a(r,?)
parametrizes our class of wave functions.

Originally introduced by Feynman [5], ¥, combines
two important degrees of freedom of the superfluid. Con-
sidering for the moment a translationally invariant sys-
tem, a Galilean transformation of the ground state is real-
ized by the choice

a(r,t)=iMvyr , 4)

where v, is the flow velocity. Second, if a(r,t) has the
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form of a plane wave, then the wave function

[ d’cptnialr,t) | ¥, (5)

represents a density wave excitation while ¥, is the cor-
responding coherent state. As we shall see below, the
flow and excitational degrees of freedom are no longer in-
dependent when the flow is nonuniform.

The form of the wave function V¥, is our main approxi-
mation. As already mentioned, this wave function is not
new. What is different is how we proceed. Rather than
minimize an energy expectation value to determine
a(r,t), we use the “continuous collapse” scheme to define
the dynamics of this function. A general discussion of
this method, sometimes called the “time-dependent varia-
tional method,” can be found in Ref. [2]; here we just
sketch the idea. An initial state ¥, defined by some
a(r,0), is evolved forward an infinitesimal time At by the
exact Schrodinger equation. The resulting state, in gen-
eral, is not exactly of the same form and is “collapsed”
into the state ¥, where a(r,At) is chosen so as to maxim-
ize the overlap. Up to an overall phase, this determines
the time evolution of a(r,#). A detailed derivation for the
case of the boson problem is given in Ref. [2]; here we
simply state the result:

D
(r)= 2M{ V-[p r)Val(r)]

+[o0 Val?l(n)] . (6)

In addition to the explicit nonlinearities, the function
a(r,t) also appears nonlinearly in the expectation values

plT)=(p(r)) ,
o lr, ' )=(pr)p(r)) —(pr)){pir')) ,

where ( ) denotes an expectation value in the state W¥,.
The symbol o is the convolution operator:

(UQOf)(r)=fd3r’oa(r,r')f(r’) . (8)

)

Equation (6) is the first in a series of approximate evo-
lution equations for boson superfluids. More refined ap-
proximations follow from expanding the class of wave
functions on which the dynamics is confined. A natural
progression of wave functions [6] would include higher
order density operator terms in the exponential of (2):

J d’tpiriay(r,0)
+1 [d’r [ drprpciayne,n+ - . )

The consequences of keeping just the lowest order term
are already quite interesting and unlikely to change quali-
tatively when the higher order terms are included.

Our time evolution equation differs significantly from
another equation that is frequently used as a model
of superfluids: the Gross-Pitaevskii or nonlinear
Schrodinger equation [7]. The latter also describes the
evolution of a complex-valued function, in this case the
condensate wave function in the weak interaction limit.
Unlike the Gross-Pitaevskii equation, however, the
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present equation contains nonlocal terms involving
the pair correlation function o, Although nonlocal
modifications of the Gross-Pitaevskii equation have been
considered as a way of correcting its microscopic proper-
ties [8], such as adding a roton minimum to the disper-
sion of excitations, the justification for such modifications
is purely phenomenological. Another advantage of the
present formulation is the possibility of systematic im-
provements. Such improvements unavoidably call for the
introduction of new degrees of freedom, a program that
can be in principle be carried out systematically using the
density operator expansion above.

III. STATIC SOLUTIONS

We will be interested in static solutions of Eq. (6) that
are characterized by irrotational flow fields v(r). To see
how these time-independent solutions arise, we write

a(r)=x(r)+id(r), (10)

where ¥ and @ are real, and examine the imaginary and
real parts of (6) separately:

0=—V:[p/(r)Vd(r)],
0=—V-[p(1)Vx(r)]+[o 0 (|Vx]*+|V®[}))(r) .

(11a)
(11b)

The expectation values p and o have been given the sub-
script ¥ to emphasize the fact that they depend only on
the real part of a,,.

Solutions to (11) can be found using an iterative ap-
proach that begins with the inputs y =0 and

Vo, (r)=Mv(r), (12)
where the irrotational flow field v(r) satisfies
V-[po(r)v(r)]=0 . (13)

This solves (11a). We next refine Y by considering (11b).
Treating v as small and keeping only the leading order
terms,

0=—V-[po(D)Vx(D) ]+ M?*[op]|v|*](r), (14)

we see that Y, is the solution of a generalized Poisson’s
equation with a source term of order |v|?. Thus the
corrections to p, (and o, ) are of the same order:

PAUT)I=po(r)+py(r)+ -+, 1)
5
o dr,t")=o(r,r')+o,(rr')+ - -

Returning now to (11a), the next-to-leading order terms
produce another Poisson equation,

0=—MV-[py(r)v(r)]—V-[po(r)Vd4(r)] , (16)

giving a correction to ® of order |v|®. Repeating this
process we obtain an expansion of the solution in powers
of |v|%

DP=®,+Dy+ -,
(17)
X=Xt Xst -



51 QUASIPARTICLE PAIR CREATION IN UNSTABLE SUPERFLOW

In a system with Galilean invariance, the special case
v(r)=const, Y =0 corresponds to an exact solution. In
particular, the source term in (14)—and consequently
X>— vanishes because of the identity

Jd*royrr)=0. (18)

The true expansion parameter is therefore not |v|2, but
rather |8v|?, where 8v represents the deviation from uni-
form flow. This distinction is a significant one, since, as
shown below, these static flow solutions are unstable at a
finite critical mean velocity, but arbitrarily small devia-
tions from uniformity.

IV. LINEAR STABILITY ANALYSIS

Viewed as solutions to classical nonlinear equations,
the static flows found in the preceding section are viable
only if they are stable to perturbations. The standard
analysis proceeds by substituting

a(r,t)=a,(r)+B(r,t) (19)

into Eq. (6) and retaining only terms linear in the pertur-
bation 3. For simplicity, we will in addition only consid-
er terms in a, to order |8v/|, so that corrections to the
density and pair correlation function (of order |8v|?) can
be neglected. On the other hand, corrections to the den-
sity that are linear in the perturbation must be included:

Pa=potope(B+p*)+ - . (20)

The corresponding correction to o, either leads to terms
quadratic in B or terms of order |8v|? and can be neglect-
ed. With these considerations in mind, one obtains the
following equation for 3:

o 22 = H[B]+G(B*1+0(I5v]?), o

HIB1=— 53-V-[poV]

—é{UOO(V-Vﬁ)ﬁLV-[v(UOOB)]} , (22)

G[B*]z%{Uo°(V'VB*)—V‘[V(UOOB*)]} . (23)

Equation (21) is one of our main results. To under-
stand its significance, we begin with a translationally in-
variant system where

Polr)=pg ,

oor,r')=oy(r—r1') .

(24)

If we further confine our attention to a state of uniform
flow, say v(r)=v,, then

V'[Vo(aooﬁ*)]:Vo'(U()oVB*):0()°(V0'V/3*) > (25)
and the operator G exactly vanishes. Moreover, since the

equation now has translational invariance, the normal
mode solutions are plane waves:

B(r,t)=explilk-r—awt)] . (26)
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Substituting (26) into (21) we obtain a formula for the
mode frequency,

o, =€, kv, 27

which is just the Galilean transformation of the Bijl-
Feynman [5] quasiparticle energy:

_ kP

"~ 2MS(k) (28)

€k
Here S(k) is the Fourier transform of the pair correla-
tion function,

S(k)=pifd3re*fk"oo(r), (29)
0

and the source of structure, such as a dip, in the disper-
sion relation. Given the form of our many-body wave
function, this result is not really surprising. Its
deficiencies—such as the overestimate, in the case of
helium, of the energy of the “roton dip”’—can be correct-
ed by refining the wave function as indicated in (9) [6].

We next consider the effects of nonuniformity in the
flow. Because of the symmetrized form of the velocity
dependent terms, the operator H continues to be Hermi-
tian when the flow is nonuniform. Normal modes y;(r)
are defined by the eigenvalue equation,

Hly;]=ooey;) . (30)
It is easily verified that

(vi,Hly;D=(H[y;]7;), 31)

where (, ) denotes the usual Hermitian inner product.
Consequently, the eigenvalues ; are real and orthogonal-
ity takes the form

(yi,aooyj)zfd3rfd3r'y?‘(r)ao(r,r’)yj(r') ,

Nonuniformity in the flow also forces us to consider the
operator G. Being of order |8v|, it might seem appropri-
ate to treat G as a perturbation. For modes with small
frequency, however, this would be dangerous since G
couples B with B*, i.e., a mode with its negative frequen-
cy counterpart. In other words, the problem of degen-
erate perturbation theory can arise for a single mode cou-
pled to its time-reversed self. We will deal with this prob-
lem by considering a situation in which only a single
mode, [ =1, has a small frequency and is well separated
from all the other modes. As discussed below, modes lo-
calized near protrusions are expected to have this proper-
ty [9].

An arbitrary perturbation can always be expanded in
terms of the complete set of orthonormal modes of H:

Blr, )= c;(t)y,(r) . (33)

Substituting this expansion into (21) and taking inner
products with the various modes yields a matrix equation
for the coefficient functions c¢;(¢). Considering only those
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basis states for which the effect of the operator G might dc,
: : i—=w,c; +Tcf (34)
be large, we confine our attention to the simple 1X 1 ma- dt 1¢1 1né1 »
trix equation that includes only the single mode i =1.
This equation reads where
J
I'y=,GlyiD
=éfd3rfd (Y H D)oo, )[v(r) —v(r)]-Vy 1) =y FHr)oo(n o )V-v(r )y )} . (35)

This shows explicitly that the coupling between a mode
and its time reversal is of order |8v| in the flow nonuni-
formity. The general solution to (34) is given by

c(=M/~Ty, |V o, twe ot

T ie(t—1)
where +vV o, —we , (36)

o*=w?—|Tl?%, (37

and the two real parameters A and 7 are arbitrary. This
is the second of our main results. It shows that there is a
window of instability determined by the condition
[, < T4l

V. DISCUSSION

We now consider the situation frequently encountered
in real experiments with superfluid helium, where the
flow field varies adiabatically. A particularly clean exam-
ple is an electron bubble being accelerated by a weak elec-
tric field [3]. Treating the bubble as a large classical ob-
ject, the flow from the point of view of a comoving ob-
server is quasistatic, although adiabatically growing in
magnitude with time. Because the flow velocity near the
equator of the bubble exceeds the velocity far from the
bubble by as much as 50%, we expect localized, rotonlike
states to be found there [9]. Localization can be argued
in the semiclassical limit where Eq. (27) applies and has
also been verified by Lenosky and Elser [10] in explicit
solutions to the mode equation (30). In the present dis-
cussion, what most interests us is the adiabatic variation
of the frequency w, of this localized mode as the asymp-
totic flow velocity is increased. When the Landau cri-
terion is satisfied in the region of fast flow, we expect w,
to pass through zero into negative values. This is the sit-
uation analyzed above, where the frequency w of the per-
turbation is given by (37). A graph of w vs w; (see Fig. 1)
resembles the crossing of two quantum mechanical ener-
gy levels, but also differs from this in an essential way.
Identifying @ with the decreasing energy of a one-roton
state and the abscissa (w=0) as the zero-roton or ‘“vacu-
um” energy level, the crossing (w=w,) marks where the
system could make a transition from one to the other.
Unlike the level crossing problem, however, here the
self-coupling term I';, leads to an attraction of levels,
rather than repulsion. This leaves a finite range of w,
where the notion of a one-roton state breaks down com-

pletely, since its energy would be imaginary. A more
direct interpretation is that the flow state itself is unsta-
ble, so that an excitation spectrum has no meaning.

The apparent attraction of energy levels can be under-
stood if the notion of “excitation” is made more precise.
First consider the complete set of coupled mode equa-
tions:

dc;

i——=w;c;+ 3T ck (38)
J

dt

With each mode we associate an operator @; whose ex-

pectation value is the mode amplitude:

(@;)=c;(1), (39)
39
(aly=cx .

Here expectation values are computed in the Fock space
generated by the complete set of creation operators @;
and the usual commutation relations hold:

[a,,2]1=5, . (40)

With these definitions, Eq. (38) can be viewed as the
Heisenberg equations of motion,

d _ -~
i (@) =([a, A1), 41)

FIG. 1. Roton-vacuum “level crossing” shows attraction,
rather than repulsion of levels. Over a small interval the vacu-
um is unstable; the growth rate of the unstable mode is shown
shaded.



51 QUASIPARTICLE PAIR CREATION IN UNSTABLE SUPERFLOW

for the Hamiltonian

A= S ala;+1 2 [T,a/a)+T%a2,] . (42)
This shows immediately that the vacuum and one-roton
states are not even coupled by the term I', but rather,
that this term has the interpretation of changing the ro-
ton number by two. In the single mode (i =1) problem
considered above, the states with occupation numbers
n =0 and n =1 still have “attracting’ energy levels. It is
clear now, however, that this attraction is really an ar-
tifact of the repulsion of n =1 from n =3 being stronger
than the repulsion of » =0 from n =2. Finally, the clas-
sical instability for || <|T';;| is consistent with the fact
that the Fock space Hamiltonian is no longer bounded
from below in this parameter range.

The roton-pair creation interpretation of the superflow
instability is especially interesting in light of electron-
bubble drift velocity measurements by McClintock and
Bowley [3]. These measurements show rather conclusive-
ly that the dissipation process is best modeled as the
coherent emission of roton pairs when the bubble exceeds
the Landau velocity v;. Moreover, from the simple fact
that the bubbles can easily be accelerated to velocities
significantly exceeding v, one infers that the coupling is
weak and can be treated perturbatively. The relevant
operator is written as [3]

ik, +k,)-R

— 2 Vi, k, 8 - , 43)
k‘,

Vi, = Jax [ar

2 4p0\/S(k1)S(k2)

The evaluation of this matrix element in the bubble
geometry is currently underway [10]. Because our wave
function (2) predicts a roton energy (28) that is off by
about a factor of 2, we expect at best a similar level of
agreement with the experimentally measured matrix ele-
ment. Nevertheless, it is satisfying that the pair-creation
mechanism now appears to be a very general feature of
an unstable superfluid.

The problem of the decay of superflow by the emission
of excitations bears some similarities with the evapora-
tion of black hcles by the Hawking process [11]. In both
situations we deal with a static field configuration (respec-
tively, flow and gravity) which represent a very high de-
gree of excitation above the ‘““vacuum” (v=0 and flat
space, respectively). Some notion of ‘“‘general covari-
ance” is evident in a fluid as well. Namely, to the extent
that each atom is subject only to forces from atoms in its
immediate neighborhood, the physics inside a small
comoving volume should be indistinguishable from the
physics in a volume of fluid at rest. The analogy has been
taken the furthest by Unruh [4], who explicitly construct-
ed a mapping between the classical, hydrodynamical
equations of convergent fluid flow, and the Schwarzschild

r)oy(r,r’)[v(r')—v(r)] Vyk
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where R is the bubble’s position operator and () is the
system volume. Near threshold, where both rotons have
wave vectors close to the critical wave vector kg, the ex-
periment measures the pair-creation matrix element
VkO’kO'

In the limit that the electron bubble is very massive,
recoil effects are small and the pair-creation matrix ele-
ment reduces to the coupling term I' in our analysis of
time-independent flow. It is now appropriate to intro-
duce continuum modes ¥, which approach plane waves
far from the bubble. These modes satisfy

Hly )= oery) (44)
with wy given by (27). The proper normalization ,

(oo re) =2 sk—k) 45)
is conveniently expressed using modes 7 :

7i(r)
Y (1‘) Ry e——— (46)
 VpeS k)

where

Py(r)~1Xexpli(k-1)], |r]—>o0 . 47)

With these definitions, the pair-creation matrix element is
given by

=7k (Doo(r,r)V-v(r )7 £ (1)) . (48)

[

geometry of a black hole. When the reasoning leading to
Hawking’s thermal spectrum is applied to the fluid prob-
lem, not surprisingly, a thermal spectrum of radiated
sound is predicted.

Unruh’s treatment differs from the present one in at
least three ways. First, his equations apply only at long
length scales and hence do not take into consideration the
fact that in a medium such as helium, microscopic excita-
tions (rotons) are the first to go unstable. In other words,
a “rotonic” horizon would be formed long before his
“sonic” horizon. This corresponds, in the black hole
problem, to an evaporation process dominated by Planck
scale physics. On the other hand, one could imagine a
superfluid without a “roton dip,” where Unruh’s long
wavelength description would be adequate.

The second basic difference in the two approaches is in
the application of quantum mechanics. Unruh begins
with classical equations and applies quantization only at
the end when he considers the linearized equations for
the perturbations about the background flow. In the
present approach, quantum mechanics is introduced at
the very beginning, so that even the background flow is
described by a wave function. The difference here is not
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merely technical in nature, but in fact points out the
main challenge posed by the black hole problem, namely,
how, in fact, does one quantize in a curved space-time?
In the fluid problem one has the luxury of having an am-
bient, flat space-time, where quantum mechanics is clear-
ly defined. This should be contrasted with the situation
of the black hole physicist, who is forced to make bold
proclamations, in particular, defining ‘“vacuum” as the
particle state in the neighborhood of an observer freely
falling through the event horizon [4,11].

Finally, the experimental realizations that have been
emphasized in the two approaches also differ in
significant ways. Unruh has considered spherically sym-
metric flow which requires some sort of tube to carry
away the converging fluid. The flow inside this tube
would be supersonic and highly unstable. Classically, the
(possibly messy) details of this flow are irrelevant in that
the fiuid inside the tube is causally disconnected from the
flow outside. In the Hawking process, however, one con-
siders modes that extend into both regions and are there-
fore sensitive to such details. Perhaps the detail that is
most troublesome is the balance of energy: as energy in
the form of excitations is being emitted, the energy in the
background flow must somehow decrease. The decay of
flow around a moving bubble is much more controlled in
this respect. Here the energy in the background flow is
simply the kinetic energy of the bubble,

_ Pl

Ex(P) M,

(49)
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where My is the (mostly hydrodynamic) bubble mass.
The energy of the emitted roton pair is then accounted
for by the decrease in Ez(P) due to recoil:

AEz=Ey(P)—Ep(P—k,—k,) ,
EVB'(kl""k2)=ekl""€k2 . (50)

Here the last line has a solution for the two roton mo-
menta provided the bubble velocity vy =P/Mp exceeds
the Landau velocity.

In view of these differences, it is fair to say that a con-
siderable gulf separates the understanding of superflow
instability developed in this paper, and Unruh’s treat-
ment [4] inspired by the Hawking process [11]. Until this
gulf is successfully crossed, it is premature to claim that
Hawking radiation has been observed in the laboratory.
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FIG. 1. Roton-vacuum “level crossing” shows attraction,
rather than repulsion of levels. Over a small interval the vacu-
um is unstable; the growth rate of the unstable mode is shown
shaded.



